Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations.

نویسندگان

  • H Kager
  • W J Wadman
  • G G Somjen
چکیده

Sustained inward currents in neuronal membranes underlie tonic-clonic seizure discharges and spreading depression (SD). It is not known whether these currents flow through abnormally operating physiological ion channels or through pathological pathways that are not normally present. We have now used the NEURON simulating environment of Hines, Moore, and Carnevale to model seizure discharges and SD. The geometry and electrotonic properties of the model neuron conformed to a hippocampal pyramidal cell. Voltage-controlled transient and persistent sodium currents (I(Na,T) and I(Na,P)), potassium currents (I(K,DR) and I(K,A)), and N-methyl-D-aspartate (NMDA) receptor-controlled currents (I(NMDA)), were inserted in the appropriate regions of the model cell. The neuron was surrounded by an interstitial space where extracellular potassium and sodium concentration ([K(+)](o) and [Na(+)](o)) could rise or fall. Changes in intra- and extracellular ion concentrations and the resulting shifts in the driving force for ionic currents were continuously computed based on the amount of current flowing through the membrane. A Na-K exchange pump operated to restore ion balances. In addition, extracellular potassium concentration, [K(+)](o), was also controlled by a "glial" uptake function. Parameters were chosen to resemble experimental data. As long as [K(+)](o) was kept within limits by the activity of the Na-K pump and the "glial" uptake, a depolarizing current pulse applied to the cell soma evoked repetitive firing that ceased when the stimulating current stopped. If, however, [K(+)](o) was allowed to rise, then a brief pulse provoked firing that outlasted the stimulus. At the termination of such a burst, the cell hyperpolarized and then slowly depolarized and another burst erupted without outside intervention. Such "clonic" bursting could continue indefinitely maintained by an interplay of the rise and fall of potassium and sodium concentrations with membrane currents and threshold levels. SD-like depolarization could be produced in two ways, 1) by a dendritic NMDA-controlled current. Glutamate was assumed to be released in response to rising [K(+)](o). And 2) by the persistent (i.e., slowly inactivating) Na-current, I(Na,P). When both I(NMDA) and I(Na,P) were present, the two acted synergistically. We conclude that epileptiform neuronal behavior and SD-like depolarization can be generated by the feedback of ion currents that change ion concentrations, which, in turn, influence ion currents and membrane potentials. The normal stability of brain function must depend on the efficient control of ion activities, especially that of [K(+)](o).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Cell Volume in the Dynamics of Seizure, Spreading Depression, and Anoxic Depolarization

Cell volume changes are ubiquitous in normal and pathological activity of the brain. Nevertheless, we know little of how cell volume affects neuronal dynamics. We here performed the first detailed study of the effects of cell volume on neuronal dynamics. By incorporating cell swelling together with dynamic ion concentrations and oxygen supply into Hodgkin-Huxley type spiking dynamics, we demons...

متن کامل

Conditions for the triggering of spreading depression studied with computer simulations.

In spite of five decades of study, the biophysics of spreading depression (SD) is incompletely understood. Earlier we have modeled seizures and SD, and we have shown that currents through ion channels normally present in neuron membranes can generate SD-like depolarization. In the present study, we define the conditions for triggering SD and the parameters that influence its course in a model o...

متن کامل

Unification of neuronal spikes, seizures, and spreading depression.

The pathological phenomena of seizures and spreading depression have long been considered separate physiological events in the brain. By incorporating conservation of particles and charge, and accounting for the energy required to restore ionic gradients, we extend the classic Hodgkin-Huxley formalism to uncover a unification of neuronal membrane dynamics. By examining the dynamics as a functio...

متن کامل

A continuum neuronal model for the instigation and propagation of cortical spreading depression.

Cortical spreading depression (CSD) waves can occur in the cortices of various brain structures and are associated with the spread of depression of the electroencephalogram signal. In this paper, we present a continuum neuronal model for the instigation and spreading of CSD. Our model assumes that the brain-cell microenvironment can be treated as a porous medium consisting of extra- and intrace...

متن کامل

Role of STDP in regulation of neural timing networks in human: a simulation study

Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 84 1  شماره 

صفحات  -

تاریخ انتشار 2000